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Abstract. Over the last couple of years, Bitcoin cryptocurrency and
the Blockchain technology that forms the basis of Bitcoin have witnessed
a flood of attention. In contrast to fiat currencies used worldwide, the
Bitcoin distributed ledger is publicly available by design. This facilitates
observing all financial interactions on the network, and analyzing how
the network evolves in time. We introduce a novel concept of chainlets,
or Bitcoin subgraphs, which allows us to evaluate the local topological
structure of the Bitcoin graph over time. Furthermore, we assess the role
of chainlets on Bitcoin price formation and dynamics. We investigate the
predictive Granger causality of chainlets and identify certain types of
chainlets that exhibit the highest predictive influence on Bitcoin price
and investment risk.

1 Introduction

Bitcoin cryptocurrency has seen tremendous interest and has achieved skyrock-
eting adoption over the last couple of years. The bitcoin phenomenon is due not
only to revolutionizing online payments but also to a big number of applications
the underlying blockchain technology has witnessed in various domains [1].

One interesting aspect of Bitcoin is that a distributed ledger (i.e., blockchain)
is maintained by all the participants to verify the authenticity of each Bitcoin
transaction. The existence of such a distributed ledger creates unique opportu-
nities with respect to graph analysis. Already, different applications have used
the distributed ledger and the Bitcoin graph information to track sex trafficking
[2] and money laundering activity [3], since criminals are also using Bitcoin.

We believe that the Bitcoin graph can be used for other interesting off-the-
beaten track applications. For instance, in most stock analysis platforms, the
market trend is still usually predicted using only historical prices and other fi-
nancial and economic indicators, without accounting for financial network struc-
ture effects. Since we can observe the complete Bitcoin graph, a natural question
to ask is whether the local graph structure impacts the price of an asset (e.g.,
Bitcoin). In other domains, local higher-order structures of complex networks,
or multiple-node subgraphs, are found to be an indispensable tool for analysis
of network organization beyond the trivial scale of individual vertices and edges.
The core idea is that if a particular subgraph occurs more or less frequently
than the expected baseline occurrence, then such a subgraph is likely to play an
important role in network functionality.

Furthermore, structural properties of multiple complex networks can be com-
pared in terms of their (dis)similarities in subgraph patterns. The role of small



subgraphs, or network motifs and graphlets, in organization of complex systems
has been first discussed in conjunction with the assessment of stability and ro-
bustness of biological networks [4, 5], and later have been studied in a variety of
contexts, from social networks to power grids (for overviews see [6, 7] and refer-
ences therein). Most recently, network motifs are shown to provide an invaluable
insight into analysis of functionality and early warning stability indicators in fi-
nancial networks [8, 9]. However, compared to biological networks, motif-induced
inference in financial systems is still an emerging field, and there yet exist no
studies on the role of motifs in the analysis of blockchain.

To our knowledge, we are the first to address the impact of local topologi-
cal structures/motifs on Bitcoin price. We can summarize our contributions as
follows:

– We introduce and formalize the notion of chainlet motifs to understand the
impact of local topological structures on Bitcoin price dynamics.

– We develop techniques to understand which local topological structures (i.e.,
chainlets) have a higher impact on the price dynamics and use those “im-
portant” chainlets for price prediction.

– We compare our techniques to the state of art time series analysis approaches
and show that employing chainlets leads to more competitive price prediction
mechanisms.

The remainder of this paper is organized as follows: In Section 2, we discuss
the related work. In Section 3, we formally define chainlets using a generalized
heterogeneous graph model. In Section 4 we compare the price prediction models
that use chainlets to other existing models to see the impact of chainlets on price.
Finally, in Section 5, we conclude with the summary of our results.

2 Related Work

Since the seminal Bitcoin paper [10] in 2008, digital coins [1] have been the most
prominent Blockchain applications. Among these, Bitcoin has been the main
focus of Blockchain analysis (see [11] for a review).

The earliest studies focused on the transaction graph to locate the coins used
in illegal activities, such as money laundering and blackmailing [12, 13], which is
known as the taint analysis [14]. Moser et al. [3] analyzed the opportunities and
limitations of anti-money laundering on Bitcoin by looking at how successive
transactions are used to transfer money.

The Bitcoin network itself has also been studied from multiple aspects. For
instance, [15] analyzed centralities, and [16] found that since 2010 the Bitcoin
network can be considered a scale-free network. Furthermore, [17] tracked the
evolution of the Bitcoin transaction network, and modeled degree distributions
with power-laws. Although these studies analyzed the Bitcoin graphs, the pri-
mary focus was on global graph characteristics. In turn, our chainlet analysis
sheds light onto local topological structures of Bitcoin and their role on price
formation.



A number of recent studies show the utility of global graph features to predict
the price [18–20]. For instance, [21] analyzed the predictive effects of average bal-
ance, clustering coefficient, and number of new edges on the Bitcoin price. Two
network flow measures were recently proposed by [22] to quantify the dynamics
of the Bitcoin transaction network and to assess the relationship between flow
complexity and Bitcoin market variables. Furthermore, [20] identified 16 features
for 30, 60 or 120 minute intervals and used Random Forest models to predict the
price. The core idea behind all these approaches is to extract certain global net-
work features and to employ them for predictions. On the other hand, chainlets
provide a finer grained insight at the network transactions. In practice, chainlets
can be used to refine the above-mentioned models, so that features are computed
on selected subgraphs only. Furthermore, network flows can be detailed in terms
of successive chainlets.

3 Methodology

The Bitcoin graph has three main components: addresses, transactions and
blocks. A transaction is a transfer of bitcoins from input addresses to output
addresses. Figure 1 shows such a network for 4 transactions and 13 addresses.
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Fig. 1: A transaction-address graph represen-
tation of the Bitcoin network. Addresses and
transactions are shown with circles and rectan-
gles, respectively. An edge indicates a transfer of
coins. The coins at address a6 are unspent.

Our Bitcoin data come
from the official Bitcoin soft-
ware; we installed the Bit-
coin core wallet 1 and had
the wallet download the entire
Bitcoin history from 2009 to
2018. Afterwards, we parsed
the Bitcoin blockchain files,
and extracted blocks, trans-
actions and addresses. The
source code of our Spark
project is available on our
Github repository. 2

We model the Bitcoin
graph as the following het-
erogeneous network with two
node types: addresses and

transactions.

The Bitcoin Graph Model. The Bitcoin network is a directed graph G =
(V,E,B) where V is a set of vertices, and E ⊆ V × V is a set of edges. B =
{Address,Transaction} represents the set of vertex types. For any vertex u ∈
V , it has a vertex type φ(u) ∈ B. For each edge eu,v ∈ E between adjacent nodes

1 https://bitcoin.org/en/download
2 https://github.com/cakcora/coinworks



u and v, we have φ(u) 6= φ(v), and either φ(u) = {Transaction} or φ(v) =
{Transaction}. That is, an edge e ∈ E represents a coin transfer between an
address node and a transaction node. This heterogeneous graph model subsumes
the homogeneous case (i.e., |B| = 1), where only transaction or address nodes
are used, and edges link vertices of the same type. In this paper, we focus on
the case where each address node is linked (i.e., input or output address of a
transaction) via a transaction node to another address node.

We emphasize three graph rules that shape the actual Bitcoin graph. First,
input coins from multiple transactions can be merged and spent in a single
transaction (as in transaction t4 in Fig. 1). Second, in a Bitcoin transaction the
input-output address mappings are not explicitly recorded. For instance, consider
the transaction t1 in Fig. 1. The output to address a6 may come from either a1
or a2. Third, coins from multiple input transactions can be spent separately, but
those received from one transaction must all be spent in a single transaction.
Any amount that is not transferred is considered to be the transaction fee, and
gets collected by the miner who creates the block. For this reason, unless it
specifies itself as output address again, an address cannot transfer some bitcoins
from a previous transaction and keep the change. As a community practice, this
address reuse is discouraged, hence most nodes appear in the graph two times;
once when they receive coins and once when they spend it. See [11] for a detailed
graph representation of Blockchain.

Blocks order transactions in time, whereas each transaction with its input and
output nodes represents an immutable decision that is encoded as a subgraph
on the Bitcoin network. Rather than using individual edges or nodes, we chose
to use this subgraph as the building block in our Bitcoin analysis. We use the
term chainlet to refer to such subgraphs.

Our choice is due to two reasons. First, the subgraph can be taken as a
single data unit because inclusion of nodes and edges in it is based on a single
decision. As a transaction is immutable, joint inclusion of input/output nodes
in its subgraph cannot be changed afterwards. This is unlike the case on a social
network where nodes can become closer on the graph because of actions of their
neighbors. Second, we argue and prove that subgraphs have distinct shapes that
reflect their role in the network, and we can aggregate these roles to analyze
network dynamics.

3.1 Graph Chainlets

We introduce the concept of k-chainlets to assess local higher order topological
structure of the Bitcoin graph.

The k-Chainlet Model A Bitcoin subgraph G′ = (V ′, E′, B) is a subgraph of
G, if V ′ ⊆ V and E′ ⊆ E. If G′ = (V ′, E′, B) is a subgraph of G and E′ contains
all edges eu,v ∈ E such that (u, v) ∈ V ′, then G′ is called an induced subgraph

of G. Two graphs G′ = (V ′, E′, B) and G′′
= (V

′′
, E

′′
, B) are called isomorphic



if there exists a bijection h : V ′ → V
′′

such that all node pairs u, v of G′ are
adjacent in G′ if and only if u and v are adjacent in G

′′
.

Merge Transition Split

Fig. 2: Merge (C3→1), Transition (C3→3)
and Split (C3→4) chainlets for 3 inputs.

Let k-chainlet Gk = (Vk, Ek, B)
be a subgraph of G with k nodes of
type {Transaction}. If there exists
an isomorphism between Gk and G′,
G′ ∈ G, we say that there exists an
occurrence, or embedding of Gk in G.
If a Gk occurs more/less frequently
than expected by chance, it is called
a blockchain k-chainlet. A k-chainlet
signature fG(Gk) is a number of oc-
currences of Gk in G.

We start by focusing on the 1-chainlet signatures and their properties. For
simplicity, we refer to 1-chainlets as chainlets. A natural classification of chainlets
can be made in terms of the number of inputs x and outputs y since there is
only one transaction involved.
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Fig. 3: Percentage of aggregate chainlets in
weeks. Splits constitute around 60% of all trans-
actions.

For a chainlet, we de-
note Cx→y if it has x in-
puts and y outputs. If the
branch is merging with other
branches, the corresponding
chainlet will have a higher
number of inputs, compared
to outputs. We call these
merge chainlets, i.e., Cx→y

such that x > y, which show
an aggregation of coins into
fewer addresses. Two other
classes of chainlets are tran-
sition and split chainlets
with x = y and x < y, respec-
tively, as shown in Fig. 2. In
what follows, we refer to these
three chainlet types as the ag-
gregate chainlets.

Fig. 3 visualizes the percentage of aggregate chainlets in time. For example,
the transition chainlets are those Cx→x for x ≥ 1. Fig. 3 shows that starting
as an unknown project, the Bitcoin network stabilized only after summer 2011.
From 2014 and onwards, the split chainlets continued to steadily rise, compared
to merge and transition chainlets.

3.2 Clustering Chainlets

The Bitcoin protocol restricts numbers of input and output addresses in a trans-
action by putting a limit on the block size (1MB), but the number of inputs and



outputs can still reach thousands. As a result, we can have millions of distinct
chainlets (e.g., C1900→200, C1901→200 or C1900→201).

We use a matrix representation to model the Bitcoin graph in time with
chainlets. For a given time granularity, such as one day, we take snapshots of the
Bitcoin network and construct a Bitcoin graph. Chainlet counts obtained from
this graph are stored as an n× n-matrix O such that for i ≤ n, j ≤ n

O[i, j] =



#Ci→j if i < n and j < n,
∞∑

z=n
#Ci→z if i < n and j = n,

∞∑
y=n

#Cy→j if i = n and j < n,

∞∑
y=n

∞∑
z=n

#Cy→z if i = n and j = n.

In this matrix notation, choosing an n value, e.g., n = 5, means that a
chainlet with more than 5 inputs/outputs (i.e., Cx→y s.t., x ≥ 5 or y ≥ 5) is
recorded in the n-th row or column. That is, we aggregate chainlets with large
dimensions that would otherwise fall outside matrix dimensions. In what follows
we use the term extreme chainlets to refer to these aggregated chainlets on
the n-th row and column.

To select a suitable value for the matrix dimension n, we analyzed the entire
Bitcoin history. We found that % 90.50 of the chainlets have n of 5 (i.e., Cx→y

s.t., x < 5 and y < 5) in average for daily snapshots. This value reaches % 97.57
for n of 20. We chose to take n of 20, because it can distinguish a sufficiently
large number (i.e., 400) of chainlets, and still offers a dense matrix.
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(b) Weekly clusters.

Fig. 4: [Color online]. Chainlet clusters with
day and week granularities. A chainlet Cx→y

is the intersection cell of the x-th row and y-th
column.

With daily and weekly
snapshots of the Bitcoin net-
work, we constructed 3.284 and
443 daily and weekly matrices,
respectively (with data from
2009 to 2018). Each of the 400
chainlets is represented as a
vector of its count in time.

We hierarchically clustered
chainlets by using Cosine Sim-
ilarity [23] over chainlet vec-
tors, and used a similarity cut
threshold of 0.7 to create clus-
ters from the hierarchical den-
dogram. Fig. 4 shows the re-
sulting clusters. Cluster mem-
berships are shown with the
same color. A white cell denotes

a chainlet that constitutes a cluster of its own. In both Fig. 4a and 4b, higher
n values in the right low corner are clustered together, and in the daily clusters



extreme chainlets (C{x|x>8}→20) have their own cluster. An interesting result is
that in both matrices extreme chainlets belong to the same clusters with some
considerably smaller chainlets such as C2→3, C3→3 and C2→6. In Section 4.2 we
show that their similarity extends to their impact on price predictions.

4 Experiments

Our experiments first prove the predictive power of chainlets with Granger
Causality. We then show how chainlets can be used to predict Bitcoin price.

4.1 Granger Causality

To assess a potential predictive role of chainlets in Bitcoin price formation, we
employ a widely adopted econometric concept of Granger causality [24]. The
causality test assesses whether one time series is useful in predicting another
(see an overview by White et al. [25]). In particular, assume Yt, t ∈ Z+ is a
p× 1-random vector (e.g., Bitcoin price) and let F t

(Y) = σ{Ys : s = 0, 1, . . . , t}
denote a σ-algebra generated from all observations of Y in the market up to time
t. Consider a sequence of (k+ 2)-tuples of random vectors {Yt,Xt,Z

1
t , . . . ,Z

k
t }.

For example, in the context of this paper X can be chainlets and Z1, . . . ,Zk
t can

be number of transactions. Suppose that for all h ∈ Z+

Ft+h

(
·|F t−1

(Y,X,Z1,...,Zk)

)
= Ft+h

(
·|F t−1

(Y,Z1,...,Zk)

)
, (1)

where Ft+h

(
·|F t−1

(Y,X,Z1,...,Zk)

)
and Ft+h

(
·|F t−1

(Y,Z1,...,Zk)

)
are conditional dis-

tributions of Yt+h, given Yt−1,Xt−1,Z
1
t−1, . . . ,Z

k
t−1 and Yt−1,Z

1
t−1, . . . ,Z

k
t−1,

respectively. Then, Xt−1 is said not to Granger cause (G-cause) Yt+h with re-
spect to F t−1

(Y,Z1,...,Zk)
. Otherwise, X is said to G-cause Y, which can be denoted

by GX�Y, where � represents the direction of causality. Hence, G-causality
means that given information on the past of Y and Z1, . . . ,Zk, the past of X
does not deliver any new information that can be used for predicting Yt+h.

In practice G-causality is typically performed by fitting two linear vector
autoregressive (VAR) models of finite order d to Y, with and without X, re-
spectively, and then testing for statistical significance of model coefficients as-
sociated with X. Alternatively, we can compare predictive performance of two
models (i.e., with and without X), using an F -test, under the null hypothesis
of no explanatory power in X. For instance, consider a case of univariate time
series yt, xt and zt. To test G-causality of xt, we compare the fit of the full
model yt = α0 +

∑d
k=1 αkyt−k +

∑d
k=1 βkxt−k +

∑d
k=1 γkzt−k + et, versus the

fit of the reduced model yt = α0 +
∑d

k=1 αkyt−k +
∑d

k=1 βkxt−k + ẽt. That is,
under the null hypothesis of no predictive effect in x onto y (i.e., x does not
G-cause y), V ar(et) = V ar(ẽt). If V ar(et) is (statistically) significantly lower
than V ar(ẽt), then we conclude that x contains additional information that can
improve forecasting of y, i.e., Gx�y.



Armed with the time series of chainlets, we are now interested in evaluating
the potential impact of local graph structures on future bitcoin price formation
and investment risk. We are primarily interested in two interlinked questions:

1. Do changes in chainlet characteristics exhibit any causal effect on future
Bitcoin price and Bitcoin returns?

2. Do chainlets convey some unique information about future Bitcoin prices,
given more conventional economic variables and non-network blockchain
characteristics?

Table 1 provides summary results of the Granger causality tests for predic-
tive utility of individual/aggregate chainlets, and chainlet clusters 3 in analysis
of the Bitcoin price and its log returns (see Fig. 4a for the clusters). Log re-
turns of Bitcoin prices measure the relative change in prices and are defined as
LRt = log yt − log yt−1. As a more conventional predictor, we also include the
total number of transactions (# of Trans.) into the baseline models. Direction
of causality is denoted by �. Table 1 indicates that individual chainlets, e.g.,
C6→1, C1→7, C20→12, as well as aggregate chainlets, e.g., split chainlets, have a
predictive impact on price formation, and in some cases also exhibit causal link-
age with future log returns. Some chainlet clusters have predictive relationship
only with Bitcoin price, whereas Cluster 35 G-causes both price and log returns.
As expected, total number of transactions also has causality effects on both Bit-
coin price and log returns. The G-causality relationships of different chainlets
and Bitcoin price indicate that they are likely to contain important predictive
information on Bitcoin price formation and volatility.

4.2 Price prediction

In Section 4.1 we show that chainlets G-cause the Bitcoin price and hence,
exhibit predictive impact on prices. We are now interested in quantifying the
forecasting utility of chainlets. To evaluate the chainlets’ predictive power, we
can use any forecasting model and compare predictive performances with and
without chainlets. Typically such a comparative analysis is performed based on
the Box-Jenkins (BJ) class of parametric linear models. However, as indicated
by [26], more flexible Random Forest (RF) models often tend to outperform the
BJ models in their predictive capabilities. In particular, we find that the opti-
mal baseline autoregressive integrated moving average (ARIMA(p, d, q)) models
selected by minimizing the Akaike Information criterion (AIC), yield from 0.2%
to 40% higher prediction root mean squared error (RMSE) than the RF baseline

models. Here RMSE =

√
(1/n)

n∑
t=1

(yt − ŷt)2, where yt is the test set of Bit-

coin price and ŷt is the corresponding predicted value. ARIMA and RF models
deliver comparable results, therefore, due to space limitations, we present the
comparison study based only on the RF type of models.

3 Some representative chainlets from daily clusters 7, 8, 16 and 35 are C9→11, C3→17,
C8→14 and C1→1, respectively.



Table 1: In G-causality, P and LR denote significance in price & log returns,
respectively; blank space implies no significance. Confidence level is 95%.

Covariate Outcome with lag effects
Types Causality 1 2 3 4 5

# of Trans. Total # Trans. � Outcome LR LR P/LR P/LR

Merge Chainlets � Outcome - - - - -
Aggregate Split Chainlets � Outcome - LR P/LR P -
Chainlets Trans. Chainlets � Outcome - - - - -

C1→7 � Outcome P P P P P
Individual C6→1 � Outcome - P P P -
Chainlets C3→3 � Outcome - P P P -

C20→2 � Outcome LR P/LR P/LR P/LR P
Extreme C20→3 � Outcome P P P P P
Chainlets C20→12 � Outcome P P P P P

C20→17 � Outcome - - P P P

Cluster 35 � Outcome LR LR P/LR P/LR -
Chainlet Cluster 16 � Outcome - LR - - -
Clusters Cluster 8 � Outcome - P P P P

Cluster 7 � Outcome - P P P P

We performed extensive experiments with various chainlets and selected to
showcase six of these RF models. Table 2 provides an overview of the constructed
models. The baseline model includes only the lagged (past period) values of the
Bitcoin price. Other models comprise of lagged prices with different covariates,
mainly chainlets or some functions of chainlets such as the mean of all aggre-
gate/split type chainlets and mean of all chainlets in a specific cluster.

In our study each RF model used 500 trees, and sampling all rows of the
data set is done with replacement. Number of variables used at each split are,
for example, 2, 3 and 4, for Models 1, 2 and 5, respectively.
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Fig. 5: % Change (decrease) in RMSE compared
to the baseline model.

We continuously change
the training data using a slid-
ing window technique, where
we choose the window size of
200. That is, at each time
step we train our model based
on the past 200 values, and
armed with this estimated
model, we then construct a h
step ahead forecast.

Predictive utilities of mod-
els in Table 2 over the base-
line model can be measured
as Ψ(X�Y ) = ψ(M)/ψ(M0),
where ψ is a measure of pre-
diction error, e.g., root mean



Table 2: Model description for Bitcoin price (response) and varying predictors.
Model Predictors

Baseline M0 Price lag 1, Price lag 2, Price lag 3

Model 1 Price lag 1, Price lag 2, Price lag 3,
# Trans lag 1 , # Trans lag 2, # Trans lag 3

Model 2 Price lag 1, Price lag 2, Price lag 3, Split Pattern lag 1,
Split Pattern lag 2, Split Pattern lag 3

Cluster 8 lag 1, Cluster 8 lag 2, Cluster 8 lag 3

Model 3 Price lag 1, Price lag 2, Price lag 3,
C1→7 lag 1, C1→7 lag 2, C1→7 lag 3

Model 4 Price lag 1, Price lag 2, Price lag 3, C1→7 lag 1, C1→7 lag 2,
C1→7 lag 2, C6→1 lag 1, C6→1 lag 2, C6→1 lag 3

Model 5 Price lag 1, Price lag 2, Price lag 3,
C1→7 lag 1, C1→7 lag 2, C1→7 lag 2, C6→1 lag 1,

C6→1 lag 2, C6→1 lag 3, C3→3 lag 1, C3→3 lag 2, C3→3 lag 3

squared error (RMSE). Here ψ(M0) is the prediction error of baseline model,
where lagged prices are the only predictor; and ψ(M) is the prediction error of
a given model, where predictors are lagged prices and other exogenous covari-
ates (X). If Ψ(X→Y ) < 1, the covariate (X) is said to improve prediction of Y .
We also calculate the percentage change in ψ for a specific model w.r.t. M0 as
∆ =

(
1− Ψ(X�y)

)
100%.

Fig. 5 compares the percent decrease in RMSE for different models, calculated
for varying prediction horizons h = 1, . . . , 30. For 1-step ahead forecast, chain-
lets and other covariates do not contribute useful predictive information over
history of Bitcoin price. However, for 3 or more steps ahead forecasts, chainlets
play an increasingly significant predictive role in Bitcoin price formation, even
when other more conventional factors, such as historical price and number of
transactions, are already in the model.

Furthermore, some chainlets has a higher utility for price prediction. For
example, in Model 5, we observe the highest decrease in RMSE, compared to
the baseline model. Models 3 and 4 yield the second highest decrease in RMSE
until the forecast horizon h of 20. After h of 20, Model 2 delivers the second
highest reduction in RMSE over the baseline model.

Fig. 6 compares the observed data with fitted values from baseline model and
three other models, i.e., Model 1, 2, and 5. For h of 1, all models deliver similar
prediction accuracy and capture the variability of the data very well. Although,
as expected, the prediction performance of all models deteriorates as forecasting
horizon h → ∞, Models 1, 2, and 5 still yield a noticeably higher predictive
accuracy, compared to the baseline model without chainlets.

5 Conclusion

We introduce a novel concept of k-chainlets on Bitcoin that expands the ideas of
motifs and graphlets to Blockchain graphs. Chainlet analysis provides a deeper
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Fig. 6: [Color Online]. Price prediction for 2016 with 1, 5, 10 for 20 day horizons.

insight into local topological properties of the Blockchain and the role of those
local higher-order topologies in the Bitcoin price formation. We find that certain
types of chainlets have a high predictive utility for Bitcoin prices. Furthermore,
extreme chainlets exhibit an important role in the Bitcoin price prediction.
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18. Kondor, D., Csabai, I., Szüle, J., Pósfai, M.and Vattay, G.: Inferring the interplay
between network structure and market effects in bitcoin. New J. of Phys. 16(12)
(2014) 125003

19. Greaves, A., Au, B.: Using the bitcoin transaction graph to predict the price of
bitcoin. No Data (2015)

20. Madan, I.and Saluja, S., Zhao, A.: Automated bitcoin trading via machine learning
algorithms (2015)

21. Sorgente, M., Cibils, C.: The reaction of a network: Exploring the relationship
between the bitcoin network structure and the bitcoin price. No Data (2014)

22. Yang, S.Y., Kim, J.: Bitcoin market return and volatility forecasting using trans-
action network flow properties. In: IEEE SSCI. (2015) 1778–1785

23. Huang, A.: Similarity measures for text document clustering. In: NZCSRSC.
(2008) 49–56

24. Granger, C.W.J.: Investigating causal relations by econometric models and cross-
spectral methods. Econometrica 37(3) (1969) 424–438

25. White, H., C.K., X., L.: Efficient and scalable computations with sparse tensors.
In: JMLR. Volume 12. (2011) 1–29

26. Kane, M.J., Price, N., Scotch, M., Rabinowitz, P.: Comparison of arima and
random forest time series models for prediction of avian influenza h5n1 outbreaks.
BMC bioinformatics 15(1) (2014) 276


